4. Fokker-Planck Equation

As shown in Sects. 3.1, 2 we can immediately obtain expectation values for pro-
cesses described by the linear Langevin equations (3.1, 31). For nonlinear
Langevin equations (3.67, 110) expectation values are much more difficult to
obtain, so here we first try to derive an equation for the distribution function. As
mentioned already in the introduction, a differential equation for the distribu-
tion function describing Brownian motion was first derived by Fokker [1.1] and
Planck [1.2]: many review articles and books on the Fokker-Planck equation
now exist [1.5—15].

Our derivation starts with an expansion of the distribution function, known
as Kramers-Moyal expansion [1.17, 19]. In this equation, only the Kramers-
Moyal coefficients (3.95, 118 —120) will enter. As seen in Sect. 3.3, these
Kramers-Moyal coefficients can also be calculated for the nonlinear Langevin
equations. As it turned out, these coefficients vanish for n = 3 for the Langevin
equations (3.67, 110) with J-correlated Gaussian-distributed Langevin forces,
and only the drift and diffusion coefficients (3.107, 108, 118, 119) enter in the
distribution function equation. Hence the Kramers-Moyal expansion with an
infinite number of terms stops after the second term. This equation is then the
Fokker-Planck equation or the forward Kolmogorov equation.

The problem of obtaining averages is thus reduced to the problem of solving
this Fokker-Planck equation. For pedagogic reasons we first treat the one-
variable case and then the more complicated case of NV variables.

4.1 Kramers-Moyal Forward Expansion

It follows from the definition of the transition probability (2.69) that the prob-
ability density W (x,t+ 1) at time #+ 7 and the probability density W(x, ) at time
t are connected by (7 = 0)

W(x, t+ 1) = [P(x, t+t|x', ) W(x',)dx' . 4.1)
T o derive an expression for the differential d W (x, t)/ 8¢, we must know the tran-

sition probability P(x, ¢+ 7 |x’, ) for small 7. We first assume that we know all
the moments (n = 1)
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M, (', t,7) = ([E(t+T) = SN |gy=x = JX—X")"P(x, t+ T|x', 1) dx, (4.2)
where |;(,) - means that at time ¢ the random variable has the sharp value x'. We
now derive a general expansion of the transition probability in three different

ways.

First Way

If all the moments are given, we can construct the characteristic function (x’ is to
be considered as a parameter) (2.19, 21)

C(u,x',t,7)

[ eI P(x, t+ )X, £)dx

1+ Y Gu)"M, (1, 7)/n! . (43)

n=1

Because the characteristic function is the Fourier transform of the probability
density and vice versa (2.22) we can express the transition probability by the
moments M,

P, t+1|x',t) = |NH| § e Mo x' 1, v)du
T —oo

NF [ e =1 4 ¥ (u)"Mu(,t,7)/n! | du.  (4.4)
NNIou :H»

Because (n = 0)

LT Guyre e dy = (- 8 s—x') (4.5)
27 o ox
and
Ix—x")f(x")=0(x—x")f(x), (4.6)
we have
Pot+elx, =1+ % (- )Mt |6(x—x"). @.7)
i n=1 n! ox
Second Way

Equation (4.7) may be derived without using the characteristic function in the
following way [4.1]: starting from the identity

P(x,t+t|x, 1) = [6(y—x) P(y, t+ 7|x', ) dy “.3)

and using the formal Taylor series expansion of the ¢ function in the form
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I(y—x)=0(x"—x+y—-x")
= b -E- 3 &A\«~|Xv
n=0 n! ox'
) le‘vz @ n
=y =7 (—— | é(x"—x), (4.9)
n=0 n! ox
we get
P(x,t+1|x',t) = m (-3 fO—x")'"PO,t+7|x,t)dy 6(x'—x)
n=0n! ox
= 1 8\ :
=1+ Y —( —— | M, (X, t,7) | 6(x' —X)
n=1 n! ox
© 1 o\ \
=1+ Y —( —— | Mux,t,7) [O(x—Xx"). (4.10)
n=1 n! ox

In deriving the second line of (4.10) we used (4.2) and for the last line
d(x—x")=Jd(x'—x) and (4.6).
Inserting (4.7) or (4.10) into (4.1) leads in both cases to

W(x,t+1)— W(x, 1) = Qw%wb + 0(t?)
= m -9 fo(x=x") My(x,t,T) W(x',t)dx'/n!
n=1 ox
=5 (-2 ) Myen 0/ W) . (4.11)
n=1 ox

Third Way

The formal Taylor series expansion (4.9) is convenient for deriving (4.11). After
multiplying (4.9) by a function of y and x' and then integrating the equation over
y and x’, we end with a Taylor series expansion of this function (only for this
expansion can the Taylor series converge). Therefore (4.11) may be derived by
avoiding any ¢ function and its derivatives and using only Taylor series
expansion for the distribution function and the transition probability. This
derivation of (4.11) runs as follows. Introducing A4 = x— x’, the integrand in (4.1)
may be expanded in a Taylor series according to

Px—A+A,t+t|x—A,0) W(x—A4,1)

> (-)" [0
=¥V — 1 A" — ) P(x+ A,t+1|x, 1) W(x,1) .
n=0 n! ox

P(x,t+t|x',t) W(x', 1)

66 4. Fokker-Planck Equation

Inserting this expression in (4.1) and integrating over A we directly obtain (4.11).
(The negative sign of the differential d4 = —dx’ may be absorbed into the
integration boundaries.)

We now assume that the moments M, can be expanded into a Taylor series
with respect to 7(n = 1)

M, (x,t,7)/n! = D™(x, )+ O(1%) . 4.12)

The term with ° must vanish, because for 7 = 0 the transition probability P has
the initial value

P(x,t|x',t)=6(x—x"), (4.13)

which leads to vanishing moments (4.2). By taking into account only the linear
terms in T we thus have

WD _ 5 (-8 ) pity wix, 1) =L W, (4.14)
ot n=1 ox

where the differential symbol acts on D™ (x, t) and W(x, t). The Kramers-Moyal
operator L gy is defined by

Lam(x, 1) = MT@\?VGS? 0. 4.15)

Equation (4.14) is the Kramers-Moyal expansion.

For non-Markovian processes, the conditional probability in (4.1) depends on
the values of the stochastic variable £(¢') at all earlier times ¢' < (2.69). Hence
also the moments (4.2) and their expansion coefficients D™ which occur in 4.14)
depend on these earlier times for non-Markovian processes. For Markov pro-
cesses, D™ do not depend on the values of £(¢') at these earlier times. With
respect to time ¢, (4.14) is then a differential equation of first order and the dis-
tribution function W(x,) is uniquely determined by integration of (4.14) starting
with the initial distribution W(x,?;) (f>t,) and for appropriate boundary
conditions. Therefore we assume that the process described by the probability
density W(x, ) is a Markov process.

The transition probability P(x,¢ | x',t') is the distribution W(x,t) for the
special initial condition W (x,?')= d(x—x'). Thus the transition probability
must also obey (4.14), i.e.,

OP(x,1|x",1')/8t =L ym(x, 1) P(x, t|x',t") , (4.16)

where the initial condition of P is given by (4.13) with 7 replaced by #'.

4.1.1 Formal Solution

A formal solution of (4.16) with the initial value (4.13) for time-independent
Ly reads
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") = eLkmM(—1")
P(x,t]x',t") = e'xm o(x—x"). 4.17)
For time-dependent Kramers-Moyal operators we have to take into account that
Lgym does not need to commute with itself for different times. The general

solution of (4.16) with the initial value (4.13) may be found by iteration of (4.16)
(Dyson series [4.2])

P(x,t]x',t")

1
O(x—x")+ [Lgm(x, t)dt; 5(x—x")
;

t
+ —QD _QNNN\NZ_C«. DvN\_AZ_C«u NNV %AR\X‘V +...
I I
ty t

oo n—1
1+ ¥ .—.Q:.—QHN... .q QM:H‘KZAH.DV...hxzﬁk.maw
d b

n=1t" t

Xo(x—x'). (4.18)

If we introduce the time-ordering operator 7 which interchanges the time-
dependent operators in such a way that the operators with larger times stand to
the left of operators with smaller times, (4.18) becomes [4.2]

p oo [ { it
PO Xt =T [1+ F -2 [dt, [dby... [dtuLin(, 1) . - Lim (6 1)
= t r t!f

Xo(x—x")

. ¢
=Texp| [Lym(x,2")d?" |S(x—x"). (4.19)
p

For small time differences 7= #— ¢ (4.18) reduces to
P, t+t|x',t) = (14 Lgm(x, £) - T+ O ()] d(x —x") (4.20)

in agreement with (4.7, 12, 15).

4.2 Kramers-Moyal Backward Expansion

In (4.15, 16) we derived an equation of motion for the transition probability
P(x,t|x',t"). In (4.15, 16) differential operators with respect to x and ¢ occur,
i.e., with respect to the value of the stochastic variable £(¢) at the later time £ >¢'.
Backward expansions are equations of motion for P where we differentiate with
respect to x’ and ¢/, i.e., with respect to the value of the stochastic variable &(¢')
at the earlier time ¢’ <¢. As shown at the end of this section, both equations lead
to the same result for P and thus either one can be used for determining P.
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For the derivation we follow closely the procedure of the second way in
mmowﬁwn.w:m from the Chapman-Kolmogorov equation (2.78) in the form
=t +t=t)

P(x,t|x',t") = [P(x, t|x", t' +T)P(x", t' + 7|x', t")dx" (4.21)
we write as in (4.8)

Px" t'+1|x',t")y={o(r—x")PW,t'+t|x',¢t")dy. (4.22)

Furthermore, we make a Taylor series expansion of the ¢ function in the form

oy—x")=6(x'"—x"+y—x")

nn n
= O (L8 ) s -x) (4.23)
n=0 n! ox’
and obtain
o4 14l * ﬂ \n , o @ n
wA\K. uN +H._.w\uﬂv” M“ |._.Q|vavqun+ﬂ‘k.~ va‘v\ —_ %AR~|X:
n=0 n! ax’
2 1 . G
=1+ Y —Mx,t,t)| — ) |o(x'=x"). (4.29)
n=1 n! ox’

Inserting (4.24) in (4.21) yields

oN \w !
P(x, t|x',t") = P(x,t|x',t'+ 1) = |£|De+ OQNV

oo A mw n

=Yy —M,x\t1)| — ) Plx,t]x\ t'+ 1)
n=1n! ox’

— s (M)t 41 & g 1o 2

=t ¥y DX, ") | — | P(x, t]|x', t')+ O(%) .
n=1 ox’

(4.25)

In deriving the last line we used (4.12). By taking into account only the linear
terms in T we get

-%h Lt PO LX) (4.26)
N\
with
Li(x't') = ¥ D™(x',1')(3/3x")". (4.27)
n=1
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As may be easily checked, (4.27) is the adjoint operator of (4.15). Equations
(4.26, 27) form the desired Kramers-Moyal backward expansion.

4.2.1 Formal Solution

A formal solution of (4.26) with the initial value (4.13) reads for time-in-
dependent L gy

P(x, t]x',t") = elkmE= 5 1y | (4.28)

For a time-dependent operator we have the Dyson series

Il

o { I3 I
1+ 3 fdefdh... | df,LiCesn)...Liu(xht,)

n=11¢ 1 Loty

P(xt|x E)

X o(x—x")

. o 1 ¢ t t ) ,
T|1+ % Jﬂ_&_?:N...E;hmz?:v.:nmzﬁ,S
n=1n! 1t t I

Xd(x—x")

. t
=Texp| [Lgu&',¢'")dt" [6(x—x'). (4.29)
;

In (4.29) the time-ordering operator 7' arranges the operators L gy (x’, ) so that
the time in the products of L gy, increases from left to right. For small time differ-
ences 7= ¢—t' (4.29) reduces to

P, t+7|x', ) = 1 +Lgm(x, ) T+ O(zH)] 6(x —x') . (4.30)

4.2.2 Equivalence of the Solutions of the Forward and Backward Equations

To show the equivalence of (4.28, 29 and 30) with (4.17, 19 and 20), respectively,
we first derive the relation

AX)6(x—x)=ATx")dox—x"). 4.31)

Here A (x) is a general real operator containing only differential operators with
respect to x and functions depending only on x. For a derivation of (4.31) we first
observe that 4 (x) ¢(x) can be written in two different ways:
A p(x) =AX) [o(x—x") p(x")dx’
=[AX)S(x—x") p(x')dx’
=fp(x")A(X)d(x—x")dx’, 4.32)
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AE) oK) =fo(x—x")AX') p(x")dx’
=fpx)AT(x')ox—x")dx’ . (4.33)

By subtracting both expressions we get
0=Jox")AX)ox—x")-A*(x")d(x—x")]dx" . (4.34)

Because ¢(x) is an arbitrary function the bracket in (4.34) must be zero.

The equivalence of (4.20, 30) follows immediately from (4.31) for
A(x) =L gp(x). Furthermore, one easily shows the equivalence of (4.28, 29) with
(4.17, 19) by using (4.31) for

\:kvﬂmhz.{_?.:_,l;“ \mikvumhms?:ﬁ -t') (4.35)
and for

. t
A(x)=Texp| [Lgm(x,¢")de"
‘ : (4.36)
t

A*(x)=Texp| [Lim(x,t")de"

t

The last relation follows from the fact that the adjoint of a product reverses its
order

(ABC...))*=...C*B*A". (4.37)

4.3 Pawula Theorem

For the solution of (4.14) it is important to know how many terms of expansion
(4.15) must be taken into account. We first derive the theorem of Pawula [4.3],
which states that for a positive transition probability P, the expansion (4.15) may
stop either after the first term or after the second term, if it does not stop after
the second term it must contain an infinite number of terms. If expansion (4.15)
stops after the second term, (4.15, 16) are then called the Fokker-Planck or
forward Kolmogorov equation, and (4.26, 27) is then called the backward
Kolmogorov equation.

To derive the Pawula theorem we need the generalized Schwartz inequality

[§.f(x) g(x) P(x)dx)? = [f2(x) P(x)dx [g2(x) P(x)dx . (4.38)

In (4.38) P(x) is a nonnegative function and f(x) and g(x) are arbitrary
functions. The inequality may be derived from
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JIf(x) 90— f) 9)*P(x) P(y)dxdy = 0,

which obviously holds for nonnegative P. We now apply (4.38) with (n, m = 0)

fX)=(x-x)"; gx)=(x—x")""";
P(x) = P(x,t+1|x',t")

and thus obtain for the moments (4.2) the inequality
sz+3mau:.amz+muq. A#.wOV

For n = 0 we have M2, < M,,,. This relation is obviously fulfilled for m = 0
(M= 1). For m =1 no restriction follows from this relation for the short time
expansion coefficients D™ of M, (4.12). For m=0, M3, <M WE which is
obviously fulfilled for every n. Thus we need to consider (4.39) only for n > 1
and m = 1. By inserting (4.12) into (4.39), dividing the resulting inequality by 72
and taking the limit 7-->0 we then obtain the following inequality for the expan-
sion coefficients D™ (n =1, m = 1):

[(@n+m)! D@*™)2 <(2n)! (2n+2m)! D@V p@n+2m) (4.40)
If D@ is zero, D®"*™ must be zero, too, i.e.,

DY =0=p@ N =pltI=_. =0 (nz]). (4.41)
Furthermore if D@"*2™ is zero, D®"**™ must be zero, too, i.e.,

D®=0=DM"=0 (n=1,...,r—-1), i.e.,
D¥ V= . =p"V=0 (rz2). (4.42)

From (4.41) and the repeated use of (4.42), one concludes that if any D®? = 0 for
r =1 all coefficients D™ with # = 3 must vanish, i.e.,

D@ —0=>D®P=D®=_..=0 (rz1). (4.43)

The Pawula theorem immediately follows from the last statement. (In contrast to
(4.43) for even coefficients a vanishing odd coefficient does not lead to restric-
tions.)

The Pawula theorem, however, does not say that expansions truncated at
n =3 are of no use. As we shall discuss in Sect. 4.6 for a simple example, one
may very well use Kramers-Moyal expansions truncated at n = 3 for calculating
distribution functions. Though the transition probability must then have nega-
tive values at least for sufficiently small times, these negative values may be very
small. For the example discussed in Sect. 4.6, the distribution function obtained
by the Kramers-Moyal expansion truncated at a proper n = 3 is in better agree-
ment with the exact distribution than the distribution function following from
the Kramers-Moyal expansion truncated at n = 2.
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4.4 Fokker-Planck Equation for One Variable

If the Kramers-Moyal expansion (4.14) stops after the second term we get the
Fokker-Planck equation (8/8¢ is denoted by a dot)

W(x,t) = LppW(x, 1), (4.44)

2
Lip= - 2 DO+ Imqbg? 7). (4.45)
ox ox

For the nonlinear Langevin equation (3.67) with (3.68) the drift coefficient D@
and the diffusion coefficient D@ are given by (3.93, 94) in terms of the function
occurring in (3.67). All higher Kramers-Moyal coefficients D™ with n >3 are
zero [see the last equation in (3.95)] and therefore (4.44) with Lgp given by (4.45)
is the exact equation for the probability density W (x,#). For another derivation,
see App. AS.

Equations (4.44, 45) may be written in the form

-w|:\ + W..M =0, (4.46)
ot ox
Sx, )= |DV(x,1) - Wc@? 1) | Wx,t). (4.47)

ox

Because (4.46) is a continuity equation for a probability distribution, S has to be
interpreted as a probability current. If this probability current vanishes at the
boundaries x = X, and X = xax, (4.46) then guarantees that the normalization is
preserved

x_.BWx

| W(x,t)dx = const . (4.48)

min

For natural boundary conditions (X, = — 0, Xpax = ), W(x,t) and the prob-
ability current (4.47) also vanish at x = + oo,

For a stationary process the probability current must be constant. With
natural boundary conditions, the probability current must be zero. To demon-
strate the usefulness of the Fokker-Planck equation we calculate the stationary
distribution function for the Brownian motion process described by the Langevin
equation (3.1) with (3.2). Here we have

DW= —yp, DP=gq/2=ykT/m (4.49)

and we immediately get from

S=(-yo-2L T Y\w=0 (4.50)
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and from the normalization condition the Maxwell distribution (3.30), i.e.,

m 3‘:_“

—exXp| — . 4.51
2kl P\ T 2T (4.51)

W)=

4.4.1 Transition Probability Density for Small Times

We now derive an expression for the transition probability density for small 7 in
another form than (4.20) specialized for the Fokker-Planck operator, i.e.,

P, t+1|x, 1) = 1 +Lgp(x, ) 1+ O(t)]) 6 (x — x") (4.52)
with
__ 8 S 3 o
Lep(x,t) = ——D(x, 1) + —5 D(x,1) . (4.53)
ox ox

Inserting (4.53) into (4.52) we get up to corrections of the order 72

2
1- WGEQ\, Ht+ @|uscﬁ Ht|do(x—x")
ox ax?

P(x,t+t|x'1)

2
exp| — bbEC«u Ht+ @|~UEQ\,DN ox—x").
ox ox

(4.54)

In deriving (4.54) im_amc_mnma x by x' (4.6) in the drift and diffusion coefficients.
If we now introduce the representation of the J function in terms of a Fourier
integral, we obtain for small 7

2 o M
exp| - 2 DO+ O > DP(x,nt L Feuoxigy
ox ox 27 -

P(x,t+1|x',1)

mP | exp[—iuDD, t)1—u*DP(x,t) T+iu(x—x")] du
T —o©

1
2)/ 2D’ 1)t

For drift and diffusion coefficients independent of x and ¢, (4.55) is not only
valid for small 7, but for arbitrary > 0. [The last line in (4.54) is then the formal
solution (4.17).] We now want to check that (4.55) leads to the correct moments

I

~ ~k|\/\‘ |DSVA\40 Nv .&N
4DP(x' 1)t

exp (4.55)

M,(x',t,7) = [(x—=x")"P(x,t+ |x', 1) dx .
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Using [4.4]

T x"expl - (x— B)*1dx = 2i)~")/mH,(iB) , 4.56)

— 00

where H,(x) are the Hermite polynomials (Hy =1, H; = 2x, H, = ax*-2,.. )
we obtain from (4.55)

M (x't,7) = [ 1]/ DP ', 1)7]"
x H,{1iDPx', 1))/ 7/DP(x',1)} . (4.57)

For the expansion coefficients of M, linear in t we therefore have (My=1)

1 DY(x, 1) n=1
lim—M,(x',t,7)/n! = ¢ DO, t) for n=2
=0T 0 n=3.

Thus (4.55) [as well as (4.52, 53)] leads to the correct drift and diffusion coeffi-
cients, i.e., it leads to expectation values which are correct up to terms linear in 7.

The form (4.55) is not unique. A class of equivalent forms has been derived
[4.5, 6]. One of these forms may be obtained as follows: by performing the dif-
ferentiation for the drift and diffusion coefficient in (4.53) we get

1 212
Loty = — 2P0®D | 92DOx 1)

ax ax®
@ 2
~ | DO,y -2 225D | 8 poyy p Fm. (4.53a)
ax ox ox

If we insert this expression into (4.52) and replace 8/0x by —98/9x’, we can
perform the same steps as before, leading for small time 7 to

1 DD (x, 1) 32D A(x, 1)
—exp | — T+ T

Px,t+tlxt)=——— 5
2)/2aDPx, )t dx ox

_e—x' = [DW(x, 1) - 20DV (x, 1)/8x] 7} (455
4aDPx, 01 ' 532

Notice that here x instead of x’ appears in the drift and diffusion coefficients.

4.4.2 Path Integral Solutions

The transition probabilities are needed for the path integral solutions [1.14,
4.5—-12]. They are derived as follows: by repeatedly applying the Chapman-
Kolmogorov equation (2.78) we can express the evolution of W(x,t) from the
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initial distribution W(xy,#,) in terms of the transition probability. Dividing the
time difference ¢ — ¢, in NV small time intervals of length t = (£ —¢#y)/N, we have
(th=to+ n7)

W(x,t) = [dxn_q fdxn_s...[dxo
P, t|xn_1stn—1) PNty EN— 1 [XN—2 EN-2) - -

P(x1,ty |xq, to) Wi(xo, to) . (4.58)

For N— o we may use for the transition probability the expression (4.55) for
small 7, which then gives correct expectation values of W (x, ¢) in the limit N— oo,
(Every integral is correct up to the order 1/N? and the product of the N+ 1
integrals is then correct up to the order 1/N [4.6].) Inserting (4.55) into (4.58) and
taking the limit N— oo we obtain with x5 =x, [t = (¢—t)/N]

W(x,t)=lim | ... | zﬂ::bs?. 1]~ V2dx}

N—o " Ntimes i=0

X eXp IZM_ _”.5.+._Ih....lbﬁuﬁkh.qb.ulm
i=0 4DV, t)T

Wi(xy, tp) . (4.59)

If we use (4.55a) instead of (4.55) in (4.58), we obtain a slightly different
expression.

Positivity of the Distribution Function

Because in (4.59) all the factors in front of W(x,, t,) are positive, the distribution
function must remain positive if we start with a positive distribution W(x,, t;).

Generalized Onsager-Machlup Function
By writing
Xip1—Xi=x(t)1

we may put the negative term in the exponent in (4.59) for the limit N—» oo in
the form

N D) = DO ) L) DO, )

4.60
=0 4DO(x,t) n  4AD®(t'),t") (4.60)

The function under the integral is called a generalized Onsager-Machlup func-
tion. (Onsager and Machlup [4.7] investigated such forms for a linear drift coef-
ficient and a constant diffusion coefficient.) Expression (4.59), where the sum in
the exponent is replaced by (4.60), seems at first glance to be quite evident. For
small diffusion D, for instance, only the pathes near the deterministic solu-
tion of

76 4. Fokker-Planck Equation

x=D"x,1),

contribute to W. It was pointed out in [1.14, 4.6], however, that this and similar
other continuous forms are meaningless if the discretization process is not
specified. Hence, only discrete forms such as (4.59) should be used.

4.5 Generation and Recombination Processes

To exemplify a process containing an infinite number of Kramers-Moyal coef-
ficients D™ we consider a process in which the stochastic variable £(¢) can take
on only the discrete values x,, = /m (m =1, ..., M) and in which only transitions
to nearest-neighbor states occur. If the transition rate from state x,, to state x,, ,
(generation rate) is denoted by G (x,,, t) and if the transition rate from state x,, to
state x,,_; (recombination rate) is denoted by R (x,,, t), the equation of motion
for the probability W (x,,, f) of state x,, is given by the following master equation
[special case of (1.34) for nearest-neighbor transitions]

WXy 8) = GO 8) WXy 1,8) = G Xy ) W (X s £)
+-AX5+TD :\A.K5+va|-A.K5.D :\AXS, Nv . Abmmv

This equation may be easily read off Fig. 4.1. For x,=m, G(n) = um,
R(m) = vin, (4.61) describes a birth and death process, whereas for x, = m,
G(m)=u, R(m) =0, (4.61) describes a Poisson process. Exact solutions of
(4.61) for various processes are given in Table 2.1 of [1.12]; for multidimensional
generation and recombination processes, see [1.11c].

Because

S +1) = exp(£18/8x)f(x)

we may immediately write the master equation (4.61) in form of the Kramers-
Moyal expansion (4.14). Denoting the variable x,, by x we have

&\Ak, t) = [exp(—10/0x) =11 G (x, ) W(x,t) + [exp(/8/0x) — 1] R(x,t) W(x,t)
= T (- 0/8x)"DO(x, 1) W(x, 1) , (4.62)
n=1
Xm+1 7 = WX 4 1,1)
n.w.“X__.__._w I.AXE.,..L
X ! W(x,, 1)
QC?:!_V DAXEV
Xm—1 =: J S\AXSITS

Fig. 4.1. Transition rates leading to the master equation (4.61)




4.6 Application of Truncated Kramers-Moyal Expansions 77

where the Kramers-Moyal coefficients are given by
D (x, 1) = ("/n)G(x, )+ (—1)"R(x, 1)] . (4.63)
In particular, the drift and diffusion coefficients D® and D® read

D® = )(G—R) = I(rate in — rate out)
(4.63a)
D@ = (1%/2) (G + R) = (I*/2)(rate in + rate out) .

If the difference / between the discrete steps becomes smaller, higher Kramers-
Moyal coefficients also become smaller and we may truncate expansion (4.62) at
some finite value n. For an actual system we cannot change /. If, for instance, x
describes electric charges, / will be the elementary charge e, which cannot be
changed. We may of course increase the size of system. If we increase the size of
the system by a factor L, i.e. m=1,..., ML, extensive quantities will also in-
crease by this factor, i.e., x = m! = Lx,,,. If the rates G and R and the prob-
ability depend only on the intensive quantities x,,,, = x/L = (m/L) !, then we get

W(Xpors 1) = ¥ (= 8/8%00)" D™ (Xpors 1) W (Xpors 1)

n=1
D™ (X por, 1) = (&"/11) [G (Xpors 1) + (= 1)" R (Xpors 1))
with
o"=(/L)". (4.64)

Thus by increasing the size of the system the Kramers-Moyal coefficients also
decrease more rapidly in n (1/Q expansion by van Kampen [1.24]). Thus, if we
truncate expansion (4.62) after the second term we obtain the Fokker-Planck
equation (4.44, 45) with drift and diffusion coefficients given by (4.64). Other
possibilities to truncate (4.62) are discussed in the following section for the
Poisson process.

4.6 Application of Truncated Kramers-Moyal Expansions

A continuous stochastic variable obeying the Langevin equation (3.67) with J-
correlated Gaussian Langevin forces (3.68) leads to a Fokker-Planck equation,
i.e., to the Kramers-Moyal expansion (4.14), which stops after the second term.
We have seen in the last section that for a generation and recombination process,
where the stochastic variable takes on only discrete values, the Kramers-Moyal
expansion has an infinite number of terms. An equation with an infinite number
of terms cannot be treated numerically and the question arises whether one can
approximate the infinite Kramers-Moyal expansion by a Kramers-Moyal expan-
sion truncated at a finite order. One may conclude from the Pawula theorem
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(Sect. 4.3) that the Kramers-Moyal expansion can be truncated only after the first
or second terms because the transition probability calculated from the Kramers-
Moyal expansion truncated at some finite term of the order N= 3 must have
negative values at least for small enough times. However, an approximate dis-
tribution function does not need to be positive everywhere. As long as the
negative values and the region where they occur are small this approximate dis-
tribution function may be very useful.

We now want to investigate the different approximations of expansion (4.14)
for the simple example [4.13] of the Poisson process, for which the master equa-
tion (4.61) reduces to (/ =1, x,,,=m =0, G(m) = u, R(m) =0)

Wim, t) = uW(im—1,t)—uW(m,1). (4.65)
The solution of (4.65) with the initial value

W(m,0) = 6.0 (4.66)
is the Poisson distribution

W(m,ty=t"e /m! with t=put. (4.67)

The cumulants K, (2.21, 25) of this Poisson distribution are all equal (K, = 7 for
n=1). If m is substituted by the continuous variable x(— o <x< o) and
Wi(x—1,t) is expanded into a Taylor series we get the infinite Kramers-Moyal
expansion

W, 1) = ¥ u(—8/3x) W(x,t)/n! . (4.68)
n=1
If we truncate the expansion (4.68) after the Nth term we have
. N
Wi(x,t) = ¥ u(—8/0x)" Wy(x,t)/n! . (4.69)
n=1

In the continuous case we should use as initial condition
W(x,0) = d(x). (4.70)

In order to see how (4.69) approximates (4.67), we have to solve (4.69). By
making a Fourier transform with respect to x it is easily seen that the solution of
(4.69) with the initial condition (4.70) is given by

o N
1 § explikx+ T (—ik)"ut/n!|dk. @.71)
n=1

Wy(x, t) =
N (X5 B) -
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By performing the integration we easily get for N=1 and N =2
Wi, ) = o(x—1), (4.72)
Wy(x, 1) = Qnr)~ Ve G- (4.73)

For higher N the integration cannot be done analytically. For a numerical in-
tegration we write (4.71) in the real form

o w2
E\ZQLVHMMQU Mﬁlkvaq\ﬁ:u_

m=1

v-1)/2]
xcos|kx—kt ¥ (=kHYVQn+1)!|dk. (4.74)

n=0

Here [a] is the integer part of the number ¢ and the sum has to be omitted if the
lower index is larger than the upper one. Due to the exponential function in
(4.71), however, only the approximations for N=1,2,3,6,7,10,11, ... exist.
To compare (4.74) with the exact result (4.67) it is convenient to treat n as a
continuous variable in (4.67). We therefore use [I"(x) is the gamma function]

Wix,ty=1te /T(x+1), (4.75)

which agrees with (4.67) for integer x = 0. From the argument of positivity of the
distribution function we conclude that (4.65) can be approximated only by trun-
cation at N = 2, i.e., by a Fokker-Planck equation or the exact solution of (4.65).
Figure 4.2 shows the exact solution (4.75) together with (4.73) and higher-order

: 1 L 1 ‘_.1- E
N s
J  t=3 £ k -
.,.U,.,. ex \.Yu /. B
3 2
w 4 "
i -\ /—.
i / ) i
s- / \ I
i A L
| y A\ H
e oy pm.z.\. 7!
o = ,\fl..q,ww
-4 -2 0] 2 4 6 8 10
X —»

Fig. 4.2. Plot of the exact distribution (ex) and of the finite-order approximate distributions (4.71) for
N =2,3,7,11 and 7= 3. The approximation for N = 7 agrees with the exact distribution within the
linewidth. For the Poisson process only the positive integer values of x have to be considered
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Table 4.1. The exact normalization M(0) and the exact first five moments M(p), p=1,...,5 and
their successive approximations (4.76) for N =2,3,6,7,10,11 and =13

ApPprox. M(0) M(1) M) M@3) M(4) M(5)

Exact 1.000 3.000 12.000 57.000 309.000 1866.000
2 0.980 3.025 11.963 54.063 269.835 1457.907
3 1.002 2.992 12.017 56.968 306.013 1817.669
6 1.000 3.000 12.000 57.004 309.088 1867.829
7 1.000 3.000 12.000 57.000 308.993 1865.893

10 1.001 2.976 11.522 47.337 115.036 ~1994.323

1 0.994 3.006 12.004 56.976 308.914 1866.233

approximations W), calculated numerically [4.13]. It may be seen that the main
virtue of W, is to be positive everywhere. Some higher approximations are closer
to the exact solution in the sense of least-squared deviation, as seen especially for
N =7 where no difference is perceptible. Like the exact solution (4.75), the dis-
tribution W5 is negative for some negative x values. For large x there are also very
small negative values of W;. As suggested from the numerical results even the
approximation N = 3, that is significantly better than that for N = 2, seems to
stay positive for all x =0 and therefore has properties similar to (4.75). As is
seen, furthermore, terms of order higher than N = 7 tend to have larger mean-
squared deviations; so the approximation (4.71) seems to be a semiconvergent
series, converging only for 7-» o in the strict sense (for smaller 7 lower approxi-
mations seem to be better, i.e., N =2 for 7 = 0.1). Table 4.1 shows the moments
if they are calculated either analytically (exact) or numerically by summing up the
approximations (4.71) at the integer values x =0,1,2, ...

My(p) = mosm Wi(m, 1) . (4.76)

It is seen that the first higher-order approximations lead to more accurate
moments. This shows that (4.71) also converges to the exact distribution (4.75);
also this convergence seems to be asymptotic. It was found in [4.13] that the
even-numbered approximations to the distribution oscillate more than the odd-
numbered ones. The negative value of the fifth moment for N = 10 is a result of
negative values for large x. If the moments are calculated by integration

oo

M) = | x?Wy(x, t)dx

— 0o

it may be seen that the cumulants up to the order p = N are identical to the exact
ones and that higher cumulants vanish. Therefore the moments M ~(D) agree with
the exact ones up to the order p = N.

Thus for certain parameters in the Poisson process the absolute amount of
negative values of the distribution function calculated by (4.69) for appropriate
N = 3 gets extremely small in the relevant region of variables, and the solution of
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the Fokker-Planck equation [i.e., (4.69) for N = 2] deviates from the exact solu-
tion much more than the solution of (4.69) deviates for some suitable N =3
values. From this example we conclude that for approximate calculations of dis-
tribution functions, Kramers-Moyal expansion truncated at some suitable N = 3
term may sometimes be used. Because the convergence seems to be asymptotic,
its N value should not be chosen too large. (To estimate the appropriate N value
without knowing the exact result will, however, be a difficult task.)

4.7 Fokker-Planck Equation for NV Variables

For N stochastic variables

=248 080 (4.77)

we proceed similarly to the one-variable case. We start with the extension of (4.1)
for N variables, i.e., with

W(x) t+ 1) = [P(x) e+ T)ix'}, £) W(ix'}h, £)dNx . 4.78)
In (4.78) the volume element is denoted by
dVx' = dx{dxj...dxk (4.79)

and N integrations have to be performed over the N variables (only one integra-
tion sign is written down). Denoting the & function for the N variables by

I({x)) = 0(x) d(x2)...0(xn) , (4.80)
we may write

P(ixh t+7le'] 1) = fo(yh— {xh P(yh e+ Tlix ), 0d%y (4.81)
It is now convenient to use the summation convention, i.e., we perform the sum-
mation over latin indices appearing twice in the expressions without writing down

the summation signs. A Taylor series expansion at {y} = {x'} of the J function
appearing in (4.81) then has the form

(W —1{x)) = o((x"} = Ix}+ )= '
HMO Q}IH:VC\:I.«? -0

T . —— T B
v Sy @‘H.,.__._ @k.hw...@.ﬂm-_ . bl | [}
1 —9)’
e FO\: |x4._:vQ‘___u|k-<___a G\.___—|HL__ w&.ﬁxﬂ _H.K_d_w =
S S e (4.82)

I
18

v
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In deriving the last line we used
(8/8x}) 0(fx"} = {x}) = (= 8/0x) ({x '} — {x})

The summation convention implies that we have to sum over the indices
J1sJ2s - - -J,- Inserting (4.82) into (4.81) yields

EQXV t+ s._ x' ?

”HATMIMI A|@v<

_— MY 6T |0 -, (4.83
v=1 vl 8x;,dx;,...0x; il D) | 0(xt=xh, (483)

J12J2> -

where the vth moment is defined by

g\A_ﬁ\N. .?A X w N H.v = ._.Q:I \ﬂvQ\N|\d\\.Nv. N .Q\cl.w\sm_,v
x P(pht+t|{x'}, )dVy. (4.84)

In deriving (4.83) we used in accordance with the one-dimensional case (4.10) the
extension of (4.6) to the N-variable & function and d({x}— {x'}) = 6({x'}— {x}).
Expanding the moments for small 7 (4.12)

MY, xh /v =D (b D T+O0(T), (4.85)

J1ed 25

we obtain the forward Kramers-Moyal expansion for N variables by inserting
(4.83) into (4.78), dividing the resulting equation by 7 and taking the limit 7— O:

ow(ix, ny/or= 5 (29

Df i (xh oy W(xh0). (4.86)
v=1 0x;...0x;

T

The solution of (4.86) with the initial condition
W(ix'},t') = P(x}ht' |ix'}t") = 6(x}—{x'}) (4.87)

is the transition probability P. Thus the forward equation for this probability
density reads

AP(x}, t|ix'},t')/ 8t = Lym({x}, ) P(x), t|{x'}, t") (4.88)
with
{ _ e (-9)" (U] It
Liw(, 0= ¥ ——2 DM . (x},1). (4.89)

v=1 9x;...8x;
The corresponding backward equation takes the form

P(x}, tl{x'},t')/8t" = —Lgm(ix'} 1) P(x} t|{x'},t) (4.90)
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oo @<
Liv(xhn = £ DS i(xh ) ————, (4.91)
v=1 @»ﬂ:...@k?
where the initial condition reads
P(x), t|fx"),0) = o(lxp— ') . (4.92)

The backward equation may easily be derived by extending the derivation in Sect.
4.2 to the N-variable case. Formal solutions of (4.88, 90) with initial conditions
(4.87, 92) are given by (4.17 — 19, 28, 29), where one has to replace x and x' by {x}
and {x'}. The equivalence of the formal solutions of the forward and backward
equations may be shown by using the N-variable version of (4.31), i.e.,

A(x) o(x}—x") = A" (x") o(ix}—{x'D (4.93)

as was done for the one-variable case. In (4.93) A ({x}) is an operator containing
functions and derivatives of the variables xy, ..., Xy-

For a process which is described by the Langevin equation (3.110) with J-cor-
related Gaussian Langevin forces (3.111) all coefficients D with v = 3 vanish
(3.120). The transition probability then satisfies the equations (summation
convention, ¢ =t').

Fokker-Planck or Forward Kolmogorov Equation

dP(Wx},t|{x'}, ¢')/0t = Lep(ix}, ) P(x}, t[ix' 1, t') (4.94)
@ 1 @N fyel
Lgp(ix} t) = ———Di(ix}, t) + ——— Dy({x}, 1) , (4.95)
Ox; Ax;0x;

Backward Kolmogorov Equation

dP(Wx), t|(x'}, 1)/8t = —Lip(ix'},t") P(x},t|x'}, ") (4.96)
+ ' ! ! ! @ ! @u
Lip(Wx'ht") = Di({x"},t') ——+ Dy(ix'}, 1) ———-. (4.97)
dx{ dx; Ox;

The initial condition in both cases is
P(x), t|ix" ) = P(x), ¢ |{x'}, 8') = 6({x} = {x')) . (4.98)

If we multiply (4.94) by W({x'},¢') and integrate over x’ we obtain the Fokker-
Planck equation for the probability density W({x},?), i.e.,

dW({x},)/0t = Lgp({x}, 1) W({x},1) . (4.94a)
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In (4.95, 97) we omitted the upper index 1 in the drift coefficient and the upper
index 2 in the diffusion coefficient, because both coefficients are distinguished by
the number of lower indices. The drift coefficient or drift vector, the diffusion
coefficient or diffusion matrix are defined by [cf. (4.84, 85)]:

drift vector

Di(eh 1) = im (& (04 1) — &(1)) : (4.99)

=0T & =x;

diffusion matrix

Dj;(ix}, 1) = Dj;({x}, 1)
1. 1
= —lim—([;(t+ 1) — &GO e+ ) - & »  (4.100)
207 &=
where |, - x, means that the stochastic variable ¢, at time ¢ has the sharp value x;

(k=1,3,....N).
As seen from the definition, the diffusion matrix is a symmetric matrix. Fur-
thermore, it is semidefinite, which follows from (e, is an arbitrary vector, 7> 0)

1
2Dja;a; = lim —({[&;(t+ 1) = &(D] ailg; (1 + T) = (D) aj))
=07 &) =xi

= lim (& + 1) - &) 0. (4.101)

™07 &0 =x;
Sometimes we assume that Dj; is positive definite, i.e.,
Dya;a;>0 for a;a;>0. 4.102)

Then the inverse of the diffusion matrix will exist.

4.7.1 Probability Current

The Fokker-Planck equation (4.94a) with (4.95) may be written in the form of
the continuity equation

OW 95 _ (4.103)

where the probability current S;is defined by

S, = D;W —(3/8x)) Dy W . (4.104)
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If the probability current vanishes at an N—1 dimensional surface F' of the N-
dimensional space, the continuity equation (4.103) ensures that the total prob-
ability remains constant inside this surface F. If it is normalized to 1 at time
t = t', the normalization will always be 1, i.e.,

5_353. HdVx=1. (4.105)

In (4.105) V(F) is the volume inside the surface F. For natural boundary condi-
tions the probability W and the current S; vanish at infinity and therefore the
normalization condition reads
[w(x,nd¥x=1. (4.105a)
(If we do not indicate any integration boundaries, an integration from — o to
+ oo is understood.)
4.7.2 Joint Probability Distribution
As discussed in Sect. 2.4.1, the complete information of a Markov process is con-
tained in the joint probability distribution W;({x}, £; {x'}, ') which can be express-
ed by the transition probability density (4.98) and the distribution at time #',
Wh(ix), tix' )t = PO t|{x ', ey W(x),t') . (4.106)
If the drift and diffusion coefficients do not depend on time, a stationary solu-

tion may exist. In this case, P can depend only on the time difference ¢—¢’, and
we may write for the joint probability distribution in the stationary state for

t=t
Wa(ixh 6 {x"},t") = P({xh, e =1 |{x'},0) W (Ix'}) (4.106a)
t<st'

Wa(xh 6 {x'h 1) = Walx'h 13 {x 0 = P(x '), ¢ = £, 0) Wo((x)) . (4.106D)

4.7.3 Transition Probability Density for Small Times
The extension of (4.52) for the N-variable case reads
PUxht+ 1|’} ) = M+ Lep((x}, ) - T+ O(1%)) 8(fx}— {x'}) . (4.107)

If we insert the operator (4.95) here we may write up to terms of the order 72
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P(x}t+tlix'h 1)

R 02
=|1—-—D:(xLWt)t+ ———D;(x'L Ot o(fx}—x'}
5, i) TRl h0) 7|8~ ')
2
—_ S h AT |@l| Tyt hm Fyl Sy 11
= exp Di(x'l, )T+ bq?& h)yt|o(x—x'.
@Hm. @k..__.@‘ﬂ.___.

Here we replaced {x} by {x'} in the drift and diffusion coefficient. By inserting the
J function expression

O(fx}—x"h = @m) Nexpliu;(x;—x})d™u (4.108)
we obtain the extension of (4.55) to N variables
P(x t+7|ix"), 1) = 2)/n7) "N Det{Dy((x'}), )] 712

X expl — WELQ\«@,D_;_\GI& —D(x' L) Tl X —xk —Di(x' 1, ) Tl ¢ -

(4.109)

In (4.109) we assumed that the diffusion matrix is positive definite so that the
inverse of the diffusion matrix exists and Det {D} # 0. It may be shown in a way
similar to the one-variable case that the drift vector (4.99) and the diffusion
matrix (4.100) are recovered from (4.109), whereas all higher Kramers-Moyal
expansion coefficients vanish. Path integral solutions may be derived from the
transition probability density for small 7, i.e., from (4.109), in the same way as in
the one-variable case, Sect. 4.4.2. With this path integral solution it can again be
shown that the solution of the Fokker-Planck equation stays positive, if it was
initially positive.

4.8 Examples for Fokker-Planck Equations with Several Variables

We now list a few examples of Fokker-Planck equations with more than one
variable.

4.8.1 Three-Dimensional Brownian Motion without Position Variable

The equation of motion for the velocity of a particle without any external force is
the Langevin equation (3.21) with a Gaussian d-correlated Langevin force, whose
strength is given by (3.22, 13). Therefore we now have 3 variables and the drift
and diffusion coefficients read

Di=—yv;, Dj=1qd;=(ykT/m)d;. (4.110)
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As is seen, the diffusion matrix is positive definite. The Fokker-Planck equation
takes the form [W = W (v, vy, 03, 1)]

ow 3 kT 92
— = —Uvit — w
ot ov; m  9v;dv;
=7 d._c+w|ﬂl?.. w. (4.111)
m

In the last line of (4.111) we have introduced vector notation, the V operator and
the Laplace operator act with respect to the velocity coordinate. Equation (4.111)
describes a special Ornstein-Uhlenbeck process. The general solution of this pro-
cess will be given in Sect. 6.5.

4.8.2 One-Dimensional Brownian Motion in a Potential

The equations of motion for the velocity and position coordinate for the
Brownian motion of a particle in the potential 72/(x) are given by (3.130) and the
corresponding drift and diffusion coefficients by (3.131). In this case the dif-
fusion matrix is singular. The corresponding Fokker-Planck equation

AW(x,v,1) R) 3 ykT 8?2
—_ 2 = - — v+ —[yr+fS ()] + —t W(x,v,t) (4.112
at ax dv [yo+f" ()] m v’ ) )

is often called Kramers equation. In (4.112) mf’' (x) = —F(x) is the negative
force. This equation is investigated further in Chap. 10.

4.8.3 Three-Dimensional Brownian Motion in an External Force
For three-dimensional Brownian motion in an external field of force F(x)

there are 6 coordinates. The Fokker-Planck equation then reads [W =
W (x1, X2, X3, 04, V2, 03, 1)]

] 2
ow _[ o, 8 R\ T _o ],
ar ox; ov; m m  dv;0y;
kT
= - Vw9, (yo- )+ 220 4, w. (4.113)
m m

In the last expression we have used vector notation.
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4.8.4 Brownian Motion of Two Interacting Particles in an External Potential

For Brownian motion of two particles with mass m;, m, in one dimension, the
Langevin equations are

. . , my+m, 0
Xy =0vy; U= ISEI\QC«:|]MIINIwﬁ\sﬁk_lﬁfﬁﬁf
" ! (4.114)
. L. , mi+m, 0O
Xp= 025 U= =y fi0) - ——2 —fL,(x1—x)+ 1.
my @NN

In (4.114) x4 (x,) and v4(v,) are the position and velocity of the first (second) par-
ticle; mf,(x,) is the external force for the two particles and (2, + my)f,,(x; — X5)

2
is the interaction potential of the two particles. If we assume that the Langevin
forces I'; and I, acting on particles 1 and 2 are not correlated, then

oLy =225 5 -1 (4.115)
31

(no summation convention) and the Fokker-Planck equation for the distribution
function W = W (xy, vy; X5, U5; t) takes the form

owsor=] - 2+ O | frgq + Mt WD) L
x4 vy my 0x,

, my+my df,(x;—x kT 92
% .\.nCnNV.T 1 , Ofwlxi 2) + Py | + Py — w.
my ox, m; 0v3

(4.116)

A numerical solution of this equation for an external cos-potential and some
models for the interaction potential are given in [4.14].

4.9 Transformation of Variables

If instead of the N variables {x}=Xxy,...,xy we use other new N variables
{x'}=x{,...,x)\ which are given by the old variables in the form

x =xl(xhL O =x/0Cy..xn, 05 i=1,...,N, (4.117)

the Fokker-Planck equation (4.94a, 95) may be expressed in terms of the new
variables. It is the purpose of this chapter to find the transformation of the old
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drift and diffusion coefficients to the new ones. Though these new drift and dif-
fusion coefficients were already obtained in Sect. 3.4.2 by transforming the
Langevin equation (3.110), we now want to derive this transformation by using
only the Fokker-Planck equation (4.94a).

By going over from one variable system to another the probability in the

volume element does not change, i.e.,

wdNx = w'dNx' . (4.118)
Because the volume elements are transformed according to the Jacobian J

dVx/dNx' = J = |Det {dx;/0x;}|=1/J" = 1/ |Det{dx; /9x;}| , (4.119)
the probability densities W and W' are connected by

W' =JW=W/J'. (4.120)

To find the transformation of the Fokker-Planck equation we must first know
the derivative of the Jacobian. Because

oxi 0% _ g, @.121)
dx; Ox

the cofactor or minor 4’% of the element a ji= 0x//0x;is given by

ak= g 0% (4.122)
oxy;

Therefore we may express the derivative of J' with respect to the element

o' _ qik_ p 0% (4.123)
@D\.\a @X\m

Using the chain rule we thus obtain
1 oy __0lnJ _O8InJ’ 1 dJ' 1 9dJ' day
J @un__. @R_.. @R—. J' @uﬁ J! @h&» @\ﬁ.
ox; @ Ox; ox; 9 oxi

ax; ox; ax; ox; 0x; ox;

=0 oo (4.124)
@...ﬁm @.ﬂm

Similarly, we obtain for the time derivative of J
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1 /aJ 1 /g

J\ar ), 7 \or ),

1 8 [day
.\\ @Q\» @N k

ox; [0\ ox; _ dx; 8 [ox;

ax; \or), dx, 0dx; ox; \ ot ),

_ 9 (dx ) (4.125)
Ox; \ ot /,

The index x indicates that the old variables are kept constant. This index is
necessary if the transformation (4.117) depends on ¢. We obviously have

L O) (2%} 8 (4.126)
ar /.

o). \ ot /), ax;

To express the derivative 8/0x;in terms of the derivatives of the new variables,
we, again, use the chain rule to get

9 ox; O 9 oxp | 8 dxp|_ 8 ax 1 &J

Ox; Ox; Ox; Ox; Ox; Ox; Ox; |@3\a ox; J @x_\

where the bracket indicates that the operator does not act outside this bracket.
Because

8 _1 8 ¥, 4.127)

Applying (4.127) twice we obtain

a? 1 8 axg 1.0 dx;
ox;0x; J Ox; Ox; J 0x; Ox;

1 82 dx, ox! 1 9 d 0x; | ax;
J 0x;dx; 0x; 0x; J Ox; | 0x; Ox; | Ox;

8*  9x; ox;

2 P —J. (4.128)
J 0xp0x; 9x; 9x; J dx; 9x0x;
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For the derivative with respect to ¢ we have similarly

9 1/9 1 /0J

- | =— | |J-—=

or/, J\Oot/, \ﬂx

A8y, (%) 9 , 1(8/)

J\Oot/, J\ 0t /, Ox; J\ot/,
oxf 0 _ 9 Oxt ) | O oxj
or J,0x; ox; \ 8t /. | dxi \ ot /,

__0 [ox) 1 aJ
axi \ ar /., J\at),
1.e., we get

8y _L1(BY, 1 8 [ox), (4.129)

ar). s\oat), T exp \ o )

By inserting (4.127 — 129) into the Fokker-Planck equation (4.94a, 95) we easily
obtain the Fokker-Planck equation for the new variables [W' = J W, (4.120)]

(] N
Y ={-8 D+ —p\w, (4.130)
or /o ox; Ox; Ox,

: ax; 9%x}
BXE ) 5 D%k b t.D

DL = - (4.131)
: ar /. ox; ox;0x; "’
Dy, = Xk 0% D;. (4.132)
ax; 9x;

These transformed drift and diffusion coefficients agree with (3.128, 129).

4.10 Covariant Form of the Fokker-Planck Equation

The transformation to new variables may be seen best by writing the Fokker-
Planck equation in covariant form, i.e., in a form where only scalars, contra-
variant or covariant vectors and tensors and covariant derivatives occur. In this
chapter we restrict ourselves to coordinate transformations, which are inde-
pendent of time. If we go over to new coordinates x'‘ which are functions of the
old coordinates x’ and vice versa, i.e.,
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x'f=xid, ., xYy),  i=1,...,N
) ) 4,133
x=x'(x'. L xN), @139

contravariant vectors A and covariant vectors A4;are transformed according to

Coaxt . J
Ali= @xh_ A, A= %x;}.. (4.134)
X X

The coordinate differential dx’is a contravariant vector, i.e.,

dyi= 0% gy (4.135)
ox’

(therefore one usually puts the index of the coordinate in the upper place),
whereas the gradient of a scalar is a covariant vector, i.e.,

i
Lo _ x99 (4.136)
ox' ox'' ox’
A scalar is not changed by a coordinate transformation, i.e.,
o =0 (4.137)

For the transformation of a tensor of rank » with p contravariant and g = n—p
covariant indices we have to use 8x'/dx p times and 8x/dx’ q times [4.15—17].
As seen from (4.132), the diffusion tensor DY = Dj;(n = p = 2) is a purely contra-
variant tensor

@H‘» ax'’” — .

Dk = DV (4.138)
@.KN @xd.\.

and the indices should therefore be put in the upper place. Obviously, the prob-
ability density is not a scalar because it transforms according to (4.120) and
furthermore the drift vector is not a contravariant vector because of the last term
in (4.131) (8x}/dt is zero because in this section we assume that transformation
(4.133) does not depend on time). Thus we first have to find a scalar W which
may be used instead of the probability density W and a contravariant vector D’
which may be used instead of the drift vector. Following Graham [4.18] (see also
[4.19]), we introduce a scalar W defined by

W=|/Det W with Det=Det{D"}. (4.139)
This transformation can be done only if Det > 0, i.e., if the diffusion matrix is

positive definite. Because of the transformation (4.138) it is easily seen that Det
transforms according to
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Det' = Det{D’ "} = (Detdx’ */dx;)* Det{D¥}
=J 2Det{DY} = J 2Det, (4.140)
where J is the Jacobian (4.119). We therefore have (W' = JW)
W'=)/Det W =J '|/DetJW =W, (4.141)

which shows that W is indeed a scalar. Next we introduce the contravariant drift
vector [4.18]

L
8 . F , (4.142)
ax’ |/ Det

D'=D;—)/Det

which transforms in accordance with (4.134), as shown by the following
equation:

vk 1k L e i
o 5ty W ype 8 D
ax’ ax’ ax'’ ox’/ |/Det
2.0k _ rkoy/ 'r 7 i
= D}~ m‘.«,.bfmk. [/Det 0 wx_kb
ax'ox/ ax'  J  ax'" ax'  |/Det
2.0k _ R 1k i i
wDi—. 0 St e S S ap D
X' ox X X X / Det
@ ..@ J @ rr @ i @ J _\Hu ]

8 ox'k\oax" DV
ax'" oax' /) ax/ |/Det

+1/Det’

- @ bl\kﬂ -
= D} —|/Det —=D'". (4.143)

9x'" |/Det’

In deriving (4.143), in the second line we used (4.127, 131) and in the third line,
(4.140), the chain rule, (dx'"/9x’) 8/0x'" = d/0x’ and (4.138).
Instead of (4.104) we now use the contravariant probability current

_ : W

§'=D'W-D"— (4.144)
ax/

The contraction of a contravariant tensor of rank 2 with a covariant vector

A;= dW/dx’ [which appears in (4.144)] is a contravariant vector as may be seen
by the transformation law

i ¥ 5 i

hw____."bl:w.\m*”@.ﬂ ox @R.ukﬁxﬁa" ox

T ax* ax” ax'/ * o axk

B*.

8,,D¥ A,

B ax’ i
axk
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Next we must find an expression for the divergence of a vector. We have already
seen that the derivative of a scalar, i.e.,

w,=" (4.145)
4

is a covariant vector. It is easy to show that

8 _§ (4.146)

ax" 1/Det

is a scalar, which is the desired expression for the divergence of a vector. From
(4.127, 140) we have

i _ V/Det @ @{.» J
Y7 ax'* ax' )/Det

Sty = /Det

= |/Det’ LY wa St (4.147)
Thus the equation
aWw/dt= —-Si;=[-D'W+D" W],
— /D -2 . -D'W+DV oW (4.148)

has the correct covariant form, i.e., it has same the form for every coordinate
transformation. Using (4.139, 142), it is easy to show that (4.148) is identical to
the Fokker-Planck equation (4.94a), i.e.,

s = . p— sL
ol e S W Xy 8 oy
ot dx' |/Det 9x’ )/Det
x |/Det w+piSY D W (
ox’
il _ .. 81/ Det
L T B 7 T,
ar  ax' 9x’  |/Det |/ Det ax’
_* (pws ow
ax’ ax’

The comparison with tensor analysis [4.15—17] shows that the diffusion matrix
(4.100) may serve as the contravariant metric tensor [4.18], i.e.,
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g'=D"=Dj. (4.149)

The covariant metric tensor g;; = bl..\. is then the inverse of the diffusion matrix
(4.100), i.e., g;;= (D Lv..\.. The Christoffel symbols of first and second kinds and
the Riemann curvature tensor are expressed by the metric tensor in the following
way [4.15—-17]:

. _ 1 m.o..h. @Q.k g
[ij, k] = @xu_ + @xs = @xM , (4.150)
Ukt =g" Lk, 11, (4.151)
9 )
R = o7 6 = o i i e 51 (4.152)

If the Riemann curvature tensor vanishes the space is Euclidean. By using a
proper coordinate transformation, the metric tensor and therefore also the dif-
fusion tensor can then be reduced to the metric tensor of Euclidean cartesian co-
ordinates [4.17], i.e., tO

9"=g9;=D"=¢;. (4.153)

If the Riemann curvature tensor does not vanish, it is impossible to find a trans-
formation where (4.153) is valid globally (it may then be valid only locally, i.e.,
near some fixed point {xy)). If we have only one variable, the Riemann curvature
tensor always vanishes. Then we can find a transformation so that the diffusion
coefficient D® > 0 is normalized to unity, see also Sect. 5.1. For two variables
with Dy, = D,y = 0 for instance the Riemann curvature tensor vanishes only if

J— T — 1
//Dy1 Dy 2 +—|/ Dy bﬁh =0 (4.154)
@\ﬂ_ 0x, Dy 0x; @km Dy,

is fulfilled.




